
Weighted A∗ vs. Sampling-Based Methods

1 Introduction

In this homework, we explore:

1. How the number of dimensions may affect sample-based search algorithms performance.

2. Implementing a weighted version of A* and seeing how different weights affect the resulting path

found.

3. Implementing sampling-based search algorithms (RRT, and RRT*) and seeing how different

parameters affect the resulting path found.

2 Distribution of points in high-dimensional spaces

2.1 Warmup

2.1.1 In a 2-dimensional unit ball (namely, a disk), how much of the volume is located

at most 0.1 units from the surface?

Using only intuition, and no calculations, we would guess roughly 10% of the volume is located in this

ring

2.1.2 In a 9-dimensional unit ball, how much of the volume is located at most 0.1 units

from the surface?

Again using only intuition, we imagine that the volume contained by this ring decreases as the number

of dimensions increase, and therefore would guess roughly 1% of the volume of the 9-D ball is located

1



in the 9-D ring

2.2 Exercise

2.2.1 Plot ηd(ε) as a function of d for ε = 0.2, 0.1, 0.01 for d = 2...10.

Figure 1: Percent of volume over the dimension number, for different values of ε

2.2.2 Discuss the implications to reducing the connection radius required for a sampling-

based algorithm to maintain asymptotic optimality.

The plots revealed results which contradict to our prior guesses. We learn that as the dimension

number increases, the percentage of volume taken up by the slice of ε thickness increases - and tends

to 100%. This is important in terms of choosing an appropriate connection radius for a sampling-based

planner, because the connection radius will determine the volume of our C-Space that will be ’skipped

over’. In our case, later in this homework when dealing with RRT or RRT ∗, if the connection radius

is too large, we essentially ignore a large area where there may be collisions, making expansion of the

tree less likely per sample.

When studying the proof of asymptotic optimality of a sampling algorithm, given an environment

with obstacles, where there is some minimal clearance - large emphasis is put on the connection radius

we choose, in order to ensure asymptotic optimality.

2



Therefore, we would like to choose a connection radius that is on the scale of the minimal clearance,

which helps keep our search algorithm somewhat near asymptotically optimal.

3 Motion Planning: Search and Sampling

3.1 Code overview

blah blah

3.2 Environment Modelling

The environment we have been provided with is a discrete 2D map, along with obstacles, a start point,

and an end point.

3.3 A∗ Implementation

Here we used a weighted version of A∗ to find a path to the goal. The heuristic used by the algorithm

is f = g+ ε · h, where g is the the total cost of the sub-path taken to reach some node ni, and h is the

Euclidian distance from some node ni to the goal.

We run the algorithm for different values of ε. Below are the results:

Figure 2: A∗ with ε = 1

3



Figure 3: A∗ with ε = 10

Figure 4: A∗ with ε = 20

ε Nodes Expanded Total Cost

1 43779 349.10

10 50291 356.13

20 50684 355.55

We notice that as ε grows in value, the algorithm becomes more greedy, meaning that it values

proximity to the goal more than the cost to the current state. This may be an effective strategy in

4



the absence of obstacles - however, as can be seen in the figures above, this may cause many node

expansions which do not lead to the goal, even though the states are nearby to the goal-state.

In terms of the path found by the algorithm, the path found using ε = 1 yields a solution with the

lowest cost. This makes sense since the cost to the goal is valued equally to the distance from the goal

when choosing node expansions.

3.4 RRT and RRT ∗ Implementation

3.4.1 RRT

We begin by implementing RRT , with 2 hyper-parameters: method of extension, and goal sampling

bias.

The goal sampling bias tells the algorithm how frequently to use the goal itself as a sample state.

The method of extension (either E1 or E2) changes informs the algorithm on how to extend. E1

causes the algorithm to extend an edge all the way to the sampled point, while E2 causes the algorithm

to extend by a set step-size, chosen by us. We decided to use the step-size min(Lextend, Lsample), where

Lsample is the length to the sampled point from the nearest neighbour node already in the tree, and

Lextend = 10.

We decided to consider Lsample, so that the algorithm would not extend past some sample state.

This is specifically important when sampline the goal itself - we would prefer to reach the goal directly,

instead of overshooting.

We chose Lextend = 10 based on the environment itself. We see that the obstacles have minimal

clearances of just over 20. We would like to ensure that we can usually sample near these clearances,

without necessarily colliding with the obstacles. Therefore, we use Lextend = 10, which just allows for

sampling to the left and right, in the case we are currently at the centre of a clearance.

Since RRT is non-deterministic, we ran the algorithm 10 times to find average run-times and costs,

when the algorithm is run with certain hyper-parameters. The results are as follows:

5



Extension Method Bias Average Cost of Path Average Runtime

E1 5% 586.81 1.69[s]

E2 5% 492.69 10.01[s]

E1 20% 606.10 2.24[s]

E2 20% 523.52 6.91[s]

We find the following cumulative distribution function, showing what fraction of runs of the algorithm

have found a solution in a given time-frame:

Figure 5: Cumulative Distribution Function

We include sample solutions found by the algorithm with different hyper-parameters:

6



Figure 6: Solution found using RRT , E1, 5% bias

Figure 7: Solution found using RRT , E2, 5% bias

7



Figure 8: Solution found using RRT , E1, 20% bias

Figure 9: Solution found using RRT , E2, 20% bias

From the data, we find that E1 finds solutions faster that E2. However the downside is that the

path found is more erratic, leading to a higher cost on average than using E2.

Furthermore, having a higher goal-bias seems to help find solutions faster, when looking at the CDF.

Again, the downside is that the path becomes more costly, since in essence the algorithm becomes more

greedy, and cares less about cost once we increase the goal-bias.

8



Given the above information, we have decided to use E2, since it produces a less erratic solution.

E1 may also be less successful in a more cluttered environment.

Furthermore, we have decided to use a goal-bias of 5%. Although the goal-bias of 20% improves

the run-time slightly, we decided that the cost of the path was more important to us.

3.4.2 RRT ∗

Now we implement RRT ∗. The code is very similar to that of RRT , however now we rewire our tree

while the algorithm is running. When rewiring the tree, we look at the k nearest neighbours to a

vertex we have just added. For each neighbour, we check if it is possible to create an edge between

itself, and the new vertex - without collision. if no collision will occur, and the cost to reach the new

vertex through the neighbour is less expensive than the cost of the new vertex, we destroy the old edge

connecting the vertex to the tree, and add a new edge between the new vertex and the neighbour.

This rewiring process occurs twice, once where we change the edge leading to the new vertex, and

again - this time where we check to change the edges of the neighbours themselves.

We experimented with various values of k - specifically k = 2, 3, 5, 10, ciel(log(n)), where n is the

number of vertices currently in the tree.

Below are the results of running the algorithm when the extension method is E2, goal-bias is 5% -

and with different values of k, averaged over 10 separate runs:

k Average Cost of Path Average Runtime

2 523.49 67.61

3 464.53 66.26

5 386.82 67.78

10 360.68 67.48

O(log(n)) 365.37045008 67.02

We find the following cumulative distribution function, showing what fraction of runs of the algorithm

have found a solution in a given time-frame:

9



Figure 10: Cumulative Distribution Function

We see that on average, the algorithm finds a solution 100% of the time in around 70[s].

We include sample solutions found by the algorithm with different values of k:

Figure 11: Solution found using RRT ∗, E2, 5% bias, k = 2

10



Figure 12: Solution found using RRT ∗, E2, 5% bias, k = 3

Figure 13: Solution found using RRT ∗, E2, 5% bias, k = 5

11



Figure 14: Solution found using RRT ∗, E2, 5% bias, k = 10

Figure 15: Solution found using RRT ∗, E2, 5% bias, k = O(log(n))

Finally, we plot the cost of the path found by the algorithm over time, for different values of k:

12



Figure 16: Solution found using RRT ∗ over time, E2, 5% bias

We see that for higher values of k, namely k = 10 and k = O(log(n)), the cost of the path decreases

more frequently. Note that we limited the number of iterations to 3000. If we had increased the

number of iterations, we would see our algorithms asymptotically converge to the optimal cost.

13


	Introduction
	Distribution of points in high-dimensional spaces
	Warmup
	In a 2-dimensional unit ball (namely, a disk), how much of the volume is located at most 0.1 units from the surface?
	In a 9-dimensional unit ball, how much of the volume is located at most 0.1 units from the surface?

	Exercise
	Plot d() as a function of d for = 0.2, 0.1, 0.01 for d = 2 . . . 10.
	Discuss the implications to reducing the connection radius required for a sampling-based algorithm to maintain asymptotic optimality.


	 Motion Planning: Search and Sampling
	Code overview
	Environment Modelling
	 A* Implementation 
	RRT and RRT* Implementation
	RRT
	RRT*



